VOLUME 92, NUMBER 4

PHYSICAL REVIEW LETTERS

week ending
30 JANUARY 2004

Flory-Huggins Model of Equilibrium Polymerization and Phase Separation
in the Stockmayer Fluid
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The competition between chain formation and phase separation in the Stockmayer fluid (SF) of
dipolar particles is analyzed using a renormalized Flory-Huggins model of equilibrium polymerization.
Calculated critical properties (7., ¢., Z.) for the SF compare favorably with simulations over a wide
range of the dimensionless dipolar (or “sticking”) energy u*. We find that the polymerization transition
preempts phase separation for a large u*, ie., (u*)? > 22.
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The novel properties of many ‘“‘complex’ fluids stem
from a competition between the influences of van der
Waals (vdW) interactions and directional interactions
that may arise from dipolar, multipolar, and induced di-
pole forces and/or the discrete atomic structure of com-
plex molecules [1,2]. When attractive vdW interactions
predominate, there is a tendency towards simple phase
separation. When these two types of interactions have
comparable strengths, their interplay often leads to the
self-organization of particle clusters that exist in a state
of dynamic equilibrium, as observed in many polyelec-
trolyte, charged colloid, protein, surfactant, and nano-
particle dispersions [3].

No general predictive theory exists for the coupling of
dynamic clustering transitions and phase separation pro-
cesses that occur in these fluids [4]. However, important
insights emerge from recent simulations of charged [5-7]
and dipolar particle fluids [8,9], such as the Stockmayer
fluid (SF) [8—10] [a fluid of particles with a Lennard-
Jones (LJ) potential and a superimposed dipolar interac-
tion]. In particular, simulations of the SF indicate the
development of transient linear chains of dipoles for
sufficiently large dipole strengths. Simulations for mix-
tures of positively and negatively charged spheres exhibit
the formation of dipolar or multipolar structures that
then form either linear or branched “‘polymers,” depend-
ing on the charge and size asymmetry of the ions [5,7].
Branched equilibrium polymers have also been found in
simulations of platelet particles with quadrupolar inter-
actions introduced to model gelation in exfoliated clay
solutions [11]. Particular interest in the SF has been
stimulated by claims [9,10,12] that the critical tempera-
ture T, ceases to exist in this system if the dipolar
interaction is sufficiently large relative to the vdW inter-
action, and a number of arguments attempt to rationalize
this theoretically unexpected phenomenon [13,14].

The competition between chain formation and phase
separation in the SF is analyzed here using a Flory-
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Huggins (FH) lattice gas model. Our primary goal lies
in relating the parameters of the SF intermolecular
potentials to the parameters of a minimal FH model. The
FH approach can be generalized to describe the molecular
structure of the associating species (when a lattice model
is adequate), branching of polymer clusters [15], and con-
straints on the polymerization process (activation, chemi-
cal initiation) [16], providing a versatile tool for modeling
a large variety of associating systems. The present treat-
ment approximates a system with long-range interactions
by a FH model with only short-range, directional inter-
actions that induce the clustering processes to a degree
governed by the strength of the long-range interactions
[14,17,18]. We avoid relying on asymptotic results for
infinite dipolar energies to estimate the model parame-
ters. Instead, we renormalize the FH vdW interactions to
account for the dipolar contributions using exact analyti-
cal results for the second virial coefficient of the SF [18].
Thus, our treatment of dipolar fluids differs from that of
Tavares et al. whose living polymerization theory applies
only to the limit of infinite dipolar energy.

The simplest model of equilibrium polymerization
postulates that each molecule or particle can freely asso-
ciate to form linear polymer chains under conditions of
thermodynamic equilibrium. Analysis of this model [16]
shows that the thermodynamic properties of the system
are unaffected by details of chain scission and fusion
processes. Chain stiffness serves to change the entropy
of polymerization [3,16], but does not produce qualitative
effects on the thermodynamics at lower concentrations
where liquid crystal type ordering is absent [19].

The FH model system is composed of a monomer
species M whose association is governed by a free energy
of polymerization Af, = Ah, — TAs, or, equivalently,
the enthalpy Ak, and entropy As, of polymerization. The
polymers form and disintegrate in dynamic equilibrium.
The polymerization process is characterized by the equi-
librium reaction,

© 2004 The American Physical Society 045502-1



VOLUME 92, NUMBER 4

PHYSICAL REVIEW LETTERS

week ending
30 JANUARY 2004

M+ My <= Mjyy, k=12 ..., 00, ()
where K, = exp(—Af,/kpT) is the unique equilibrium
constant for all j and k. The usual isotropic vdW inter-
actions are represented by the parameter y = epy/T of
the FH model [9]. The concentration of the associating
species in the FH treatment is the product of the particle
number density and the lattice cell volume, defined by the
hard-core exclusion volume just as in the vdW gas model
[20]. All properties analyzed below are expressed as
dimensionless ratios, so that the lattice cell volume and
other “‘nonuniversal” parameters do not enter explicitly.

The Helmholtz free energy F per lattice site (volume)
for the free association lattice gas is given by [16]

F/kgT =(1 = ¢)In(1 — ¢) + ¢ Ing;
+x(1 = )b + fu 2

where ¢ and ¢ ; are the monomer volume fractions before
and after polymerization, respectively. The association
contribution f, = (z¢;A/2)/(1 — A)? is a function of ¢,
and the association parameter A = ¢;K,. The lattice
coordination number is chosen as z = 6, corresponding
to a cubic lattice. The equilibrium monomer concentration
¢ ¢ is determined numerically from the mass conservation
equation ¢ = ¢, + f4(2 — A) [16].

The SF is an idealized model of a dipolar gas or dipolar
particle dispersion in a continuum fluid. (See [21] for a
review.) The point particles (with dipole moments w)
interact with a Lennard-Jones potential (specified by
well depth e;; and interaction range o). The reduced
dipole energy is simply u* = (u?/e;;0°)% (ky = 1).
In conformity with other attempts to describe the poly-
merization in the SE we assume that the long-range
interactions between individual dipoles are compensated
in the particle clustering process and, thus, are effectively
subsumed into the interaction parameters (A& Pr As s EFH)
of the FH model of equilibrium polymerization. Argu-
ments have been given supporting this approximation
[18], which is normally used to model equilibrium poly-
merization in experimental systems.

Chains are the preferred form of clusters in the SF
because the mutual potential energy of interaction is
minimized when spherical dipolar particles of radius o
align head to tail. The energy minimum at this configu-
ration equals 2(u?/0?) and provides the first natural
approximation to the “sticking energy” Ah, of the FH
model through Ak, /R = 2(u?/0?) [10,18], where the gas
constant R enforces dimensional consistency. Moreover,
the correspondence Ah,/R =~ 2(u?/o?) implies that the
calculated second virial coefficient A, for the FH model
[16] is consistent with the exact asymptotic scaling of A,
for the SF in large dipolar energy limit [22].

Figure 1 summarizes Monte Carlo (MC) results for
TSF(u*) of the SF that are normalized by the critical
temperature for the LJ fluid, 7' = T35 (u* = 0) = T3¢,
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Triangles denote the data of van Leeuwen and co-workers
[8,9], and circles designate the data of Stevens and Grest
[10]. The MC data [10] for T5F(u*)/ T3} exhibit a “knee”
at (u*)?> =2 (see [8-10]) and a linear variation with
(u*)* for (u*)?> = 2. The knee is also characteristic of
the dependence of T, on (|Ah,|/R)/2&ly in the free
association model, and the position of the knee depends
on As, [16].

Before comparing predictions of the FH model with
simulations for the SE the parameters of both models
must be interrelated. The vdW interaction strength for
the LJ fluid (i.e., for the SF with vanishing u*) is e,
and its counterpart in the FH model is efy. A relation
between &1 and ng is determined by equating the theta
temperatures Ty = T55 at which A, vanishes [23]. This
condition is suitable because T far exceeds T, and can be
calculated exactly for the SF [24,25] and very precisely
for the LJ fluid as Tj' = T3§ = 3.417928 02(3)e; [26].
Since T, for a monomer lattice fluid equals T35 = 2&ly,
we obtain el = 1.709g .

Combining the correspondence between gp; and &b,
the definition w* = (u2/e;0°)"/2, and the relation
Ah,/R = 2(u?/0?) yields scaling between the main pa-
rameters of the FH and SF models,

FIG. 1. Comparison of reduced critical temperature T,./T,
and reduced theta temperature Ty/7 ..o of the SF between MC
simulations and renormalized FH model predictions. Triangles
denote MC data of van Leeuwen et al [8,9], and circles
designate data of Stevens and Grest [10]. T, and Ty, refer
to data for the LJ model. The uncertainty in MC simulations
for T./T.q is about =0.01 [10]. The strong dependence of T,
on u* in the MC simulations cannot be reproduced within the
FH model without renormalizing the vdW interactions. As
emphasized in the inset, when the vdW interactions are not
renormalized, i.e., epg = 810:H, the predicted T./T.o cannot
exceed Ty /T, .. Long-dashed, solid, and short-dashed curves
correspond to As, = —75, —105, and —135 J/(mol deg),
respectively.
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(1*)? = 1709[(1AR,|/R)/2ep], 3

enabling the comparison of these two models. Inspection
of Fig. 1 reveals that 757 (u*) can significantly exceed T%'
(dashed line). For instance, T4'/TH =~ 2.6, whereas
TSF/TY = 5.5 for (u*)?> = 24.6 [23]. Describing the ele-
vation of T5F above T within the FH lattice model
requires a renormalization of the effective FH vdW in-
teraction &l to incorporate contributions from dipolar
interactions [17]. This need is also evident from the inset
of Fig. 1, which demonstrates that the critical temperature
Tt for the unrenormalized FH model (i.e., with &l
instead of epy) never surpasses TH1 for this case.

Exact calculations for A, of the SF [24,25] provide a
recipe for renormalizing egy. First, tabulations of A, for
the SF in Appendix II-A of Ref. [27] as a function of
w* and T enable determining T5F(w*). The shift of the
theta temperature ATSF = T5F(u*) — T5F(n* = 0) due to
the dipolar energy is approximately a linear function of
(u*)? in the regime where the data are tabulated [i.e.,
(u*)* = 2]. Specifically, we find

ATSF/TSF (u* = 0) = 0.27[(w*)> — (w*)3],

where (u*)3 = 0.48. On the other hand, the inset of Fig. 1
shows that THH = 29, is constant for the bare FH model
(with epg = ng) in the weak coupling regime. Hence,
the renormalization of &%, is established by equating
ATSF/TS) and  ATGH/TEY  for  (u*)* — (w*)§ > 0.
Defining a multiplicative renormalization epy(u™) =
edyl1 + 8(n*)] leads to the relation

(u") = ATGH /T4y @)
Since ATE/TyY = 1/4, Eq. (4) becomes
8(u*) = 0.065[(1*)* — (u*)3]. (5)

This 8(u*) exhibits a weak power law 8(u*) = 0.04(u*)*
dependence on the dipolar energy for (u*)? = 0.1, but we
neglect this miniscule renormalization of &% for small
w* [ie., choose 8(u*) = 0 for (u*)* = (u*)3].

All the lattice model parameters are now fixed except
As,. A rough estimate of As, can be obtained by using
our finding [16] that the knee in T (A#,) in the inset of
Fig. 1 occurs for A#, on the order of As,/4R. Converting
this turnover value to (u*)? and equating it with that in
the SF data [(u*)> = 2 to 3] yields As,/R = 5, which
agrees in order of magnitude with Rowlinson’s [25] esti-
mate of As, for a number of dipolar gases (acetonitrile,
methyl chloride, acetaldehyde, water, ammonia). In the
following comparisons of the FH and SF models, As, is
treated as an adjustable parameter that must be consistent
with these approximate estimates.

Figures 1 and 2 compare the SF simulations and FH
model predictions for the SF critical temperature T.(u™*)
and critical composition ¢.(u*). Both quantities are nor-
malized by their respective values for the LJ fluid to
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minimize model dependent and nonuniversal effects.
The fits to the SF T, are made for the idealized stiff and
fully flexible chain models using As, = —49 and
—71 J/(mol deg), respectively, while no adjustable pa-
rameters enter into the computation of ¢.(u*) in Fig. 2
[8,9]. The agreement between the simulations and the FH
model predictions is quite respectable for ¢.(u*), given
the considerable uncertainty in determining ¢ .(u*) from
the very flat MC coexistence curves. The reduced critical
compressibility factor, Z, = I1,/T.¢,., where I, is the
pressure at the critical point, is another basic critical
property that is analyzed in the inset of Fig. 2. The FH
model predicts the correct trend in the variation of
Z./Z.o with (u*)?* [where Z.o = Z.(u* = 0)], but the
uncertainties in the MC estimates of this property are
even larger than those for ¢.(u*), as indicated in [8,9].
The MC data are insufficient to decide whether the stiff or
flexible chain models are most accurate, but the differ-
ences between the models are not large.

The competition between phase separation and poly-
meric association in the SF is further illustrated in Fig. 3
which depicts the spinodal curves and polymerization
lines for (u*)> =1, 10, and 22. These values of (u*)?
lie below and above the “crossover value” (u*)? =2
and near the estimated critical dipolar interaction
(u*)? = 25 where T, has been claimed to ‘“‘disappear”
[10]. The polymerization temperature Tp(¢), which is
defined by a specific heat maximum [3,16], lies well
below T. when w* is small, but coincides with T. for
(u*)? = 22. The SF spinodal curves flatten and become
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FIG. 2. Comparison of reduced critical composition ¢./¢..o
of the SF between MC simulations and renormalized FH
model predictions. Triangles and circles refer to the same
data as in Fig. 1. The uncertainty in MC simulations for
./ b is about £0.033, roughly twice the size of the triangles
(=20.03) [8]. Solid and dashed lines are FH model predictions
for stiff and fully flexible chains, respectively. The inset pro-
vides a corresponding comparison for the reduced critical
compressibility Z./Z. . Circles are data of van Leeuwen [8].
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FIG. 3. Spinodal curves and polymerization lines of the SF
for different values of the dimensionless dipolar energy
(u*)?> =1, 10, and 22. Both T and ¢ are normalized as in
Figs. 1 and 2.

more asymmetric with increasing u*. This increased
anisotropy of the phase boundary stems from the poly-
meric nature of the fluid in the critical region.

A major unresolved aspect of the MC simulations of
the SF concerns claims of a disappearing critical point for
(u*)? greater than a “critical” value near 25 [10]. Our
calculations for (u*)> = 25 demonstrate that the poly-
merization transition for the critical composition occurs
at a higher temperature than 7. This result is consistent
with the finding of the simulations that long chains are the
most conspicuous structures observed in this regime of
large n* [9,10,12]. Since long chains persist on long time
scales for T <T,(¢.;pu"), configurational sampling
by conventional MC effectively becomes impossible.

Further insight into the critical behavior of the SF
should emerge from studies of related associating fluids.
For example, recent direct imaging measurements for
nanoparticle dispersions of magnetic particles in decalin
suggest that the system is a close realization of the SF
[28]. The dipole interaction varies with particle size [28],
and the effective vdW interaction can be tuned in colloi-
dal suspensions [29]. Preliminary results for the re-
stricted primitive model with vdW interactions indicate
that 7. and ¢, exhibit a similar variation to the critical
parameters for the SF model when (u*)? is replaced by
the ratio of Coulombic charge and vdW energies [30].

The SF model is prototypical of equilibrium molecular
self-organization. This Letter describes how the interac-
tion parameters governing this phenomenon are related to
molecular interactions and how the coupling between
polymerization and phase separation leads to the emer-
gence of critical behavior resembling that of high mo-
lecular weight polymer solutions with large clustering
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interactions. Although our equilibrium theory implies
that T, formally exists for all (u*)> > 0, equilibration
may not be easily attainable in simulations for which
Tp(d)c; M*) > Tc(lu*)
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